Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mod Pathol ; 36(4): 100100, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36788081

RESUMEN

TP53 mutation is associated with primary endocrine resistance in luminal breast cancer (BC). Nuclear accumulation of p53, as determined by immunohistochemistry (IHC), is a surrogate marker for TP53 mutation. The immunohistochemical p53 index that defines a p53-positive status is not well established. This study determined the optimal p53 index cutoff to identify luminal BCs harboring TP53 mutations. In total, 364 luminal BCs from the West German Study Group ADAPT trial (NCT01779206) were analyzed for TP53 mutations by next-generation sequencing and for p53 expression by IHC (DO-7 antibody). P53 indices were determined by automated image analysis. All tumors were from patients treated with short-term preoperative endocrine therapy (pET; tamoxifen or aromatase inhibitor) before tumor resection. IHC evaluation included needle biopsies before therapy (baseline) and resections specimens after therapy (post-pET). Optimal p53 index cutoffs were defined with Youden statistics. TP53 mutations were detected in 16.3% of BC cases. The median p53 indices were significantly higher in TP53-mutated BCs compared to BCs harboring wild-type TP53 (baseline: 47.0% vs 6.4%, P < .001; post-pET: 50.1% vs 1.1%, P < .001). Short-term pET decreased p53 indices in BCs harboring wild-type TP53 (P < .001) but not in TP53-mutated BCs (P = .102). For baseline biopsies, the optimal p53 index cutoff was ≥34.6% (specificity 0.92, sensitivity 0.63, Youden index 0.54, accuracy: 0.87). For post-pET specimens, the optimal cutoff was ≥25.3% (specificity 0.95, sensitivity 0.65, Youden index 0.60, accuracy: 0.90). Using these cutoffs to define the p53 status, p53-positive BCs were >2-fold more common in pET nonresponders compared to pET responders (baseline: 37/162, 22.8% vs 18/162, 11.1%, P = .007; post-pET: 36/179, 20.1% vs 16/179, 8.9%, P = .004). In summary, IHC for p53 identifies TP53-mutated luminal BCs with high specificity and accuracy. Optimal cutoffs are ≥35% and ≥25% for treatment-naïve and endocrine-pretreated patients, respectively.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteína p53 Supresora de Tumor/metabolismo , Mutación
2.
Mod Pathol ; 35(12): 1812-1820, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35922548

RESUMEN

Invasive lobular carcinoma (ILC) represents the second most common subtype of breast cancer (BC), accounting for up to 15% of all invasive BC. Loss of cell adhesion due to functional inactivation of E-cadherin is the hallmark of ILC. Although the current world health organization (WHO) classification for diagnosing ILC requires the recognition of the dispersed or linear non-cohesive growth pattern, it is not mandatory to demonstrate E-cadherin loss by immunohistochemistry (IHC). Recent results of central pathology review of two large randomized clinical trials have demonstrated relative overdiagnosis of ILC, as only ~60% of the locally diagnosed ILCs were confirmed by central pathology. To understand the possible underlying reasons of this discrepancy, we undertook a worldwide survey on the current practice of diagnosing BC as ILC. A survey was drafted by a panel of pathologists and researchers from the European lobular breast cancer consortium (ELBCC) using the online tool SurveyMonkey®. Various parameters such as indications for IHC staining, IHC clones, and IHC staining procedures were questioned. Finally, systematic reporting of non-classical ILC variants were also interrogated. This survey was sent out to pathologists worldwide and circulated from December 14, 2020 until July, 1 2021. The results demonstrate that approximately half of the institutions use E-cadherin expression loss by IHC as an ancillary test to diagnose ILC and that there is a great variability in immunostaining protocols. This might cause different staining results and discordant interpretations. As ILC-specific therapeutic and diagnostic avenues are currently explored in the context of clinical trials, it is of importance to improve standardization of histopathologic diagnosis of ILC diagnosis.


Asunto(s)
Neoplasias de la Mama , Carcinoma in Situ , Carcinoma Ductal de Mama , Carcinoma Lobular , Femenino , Humanos , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/patología , Inmunohistoquímica , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
J Pathol Clin Res ; 8(2): 191-205, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34889530

RESUMEN

Invasive lobular breast carcinoma (ILC) is the second most common breast carcinoma (BC) subtype and is mainly driven by loss of E-cadherin expression. Correct classification of BC as ILC is important for patient treatment. This study assessed the degree of agreement among pathologists for the diagnosis of ILC. Two sets of hormone receptor (HR)-positive/HER2-negative BCs were independently reviewed by participating pathologists. In set A (61 cases), participants were provided with hematoxylin/eosin (HE)-stained sections. In set B (62 cases), participants were provided with HE-stained sections and E-cadherin immunohistochemistry (IHC). Tumor characteristics were balanced. Participants classified specimens as non-lobular BC versus mixed BC versus ILC. Pairwise inter-observer agreement and agreement with a pre-defined reference diagnosis were determined with Cohen's kappa statistics. Subtype calls were correlated with molecular features, including CDH1/E-cadherin mutation status. Thirty-five pathologists completed both sets, providing 4,305 subtype calls. Pairwise inter-observer agreement was moderate in set A (median κ = 0.58, interquartile range [IQR]: 0.48-0.66) and substantial in set B (median κ = 0.75, IQR: 0.56-0.86, p < 0.001). Agreement with the reference diagnosis was substantial in set A (median κ = 0.67, IQR: 0.57-0.75) and almost perfect in set B (median κ = 0.86, IQR: 0.73-0.93, p < 0.001). The median frequency of CDH1/E-cadherin mutations in specimens classified as ILC was 65% in set A (IQR: 56-72%) and 73% in set B (IQR: 65-75%, p < 0.001). Cases with variable subtype calls included E-cadherin-positive ILCs harboring CDH1 missense mutations, and E-cadherin-negative ILCs with tubular elements and focal P-cadherin expression. ILCs with trabecular growth pattern were often misclassified as non-lobular BC in set A but not in set B. In conclusion, subtyping of BC as ILC achieves almost perfect agreement with a pre-defined reference standard, if assessment is supported by E-cadherin IHC. CDH1 missense mutations associated with preserved E-cadherin protein expression, E- to P-cadherin switching in ILC with tubular elements, and trabecular ILC were identified as potential sources of discordant classification.


Asunto(s)
Neoplasias de la Mama , Carcinoma Lobular , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma Lobular/diagnóstico , Carcinoma Lobular/genética , Femenino , Humanos , Inmunohistoquímica , Variaciones Dependientes del Observador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...